“三角形的中位线”是初中学习三角形知识点中必不可少的内容。对学生的要求是必须了解三角形中位线的概念,熟练掌握三角形中位线定理的证明和有关应用。
(1)该课程设定需要使学生达到什么能力目标
(2)本课程的教学重点与难点。
(3)教学过程(只要求写出新课导入和新知识探究、巩固、应用等)及设计意图。
正确答案及解析
正确答案
解析
(1)该课程设定需要使学生达到:
①经历“探索一发现一猜想一证明”的过程,进一步发展推理论证能力。
②能够用多种方法证明三角形的中位线定理,体会在证明过程中所运用的归纳、类比、转化等数学思想方法。
③能够应用三角形的中位线定理进行有关的论证和计算,逐步提高学生分析问题和解决问题的能力。
(2)教学重点与难点
教学重点:三角形中位线的概念与三角形中位线定理的证明。
教学难点:三角形中位线定理的多种证明。
(3)教学过程
①一道趣题——课堂因你而和谐
问题:你能将任意一个三角形分成四个全等的三角形吗 这四个全等三角形能拼凑成一个平行四边形吗 (板书)
(这一问题激发了学生的学习兴趣,学生积极主动地加入到课堂教学中,课堂气氛变得较为和谐,课堂也鲜活起来了。)
学生想出了这样的方法:顺次连接三角形每两边的中点,看上去就得到了四个全等的三角形。将AADE绕E点沿顺(逆)时针方向旋转l800可得平行四边形ADFE。
问题:你有办法验证吗
②一种实验——课堂因你而生动
学生的验证方法较多.其中较为典型的方法如下:生l:沿DE、DF、EF将画在纸上的AABC剪开,看四个三角形能否重合。生2:分别测量四个三角形的三边长度,判断是否可利用“SSS”来判定三角形全等。生3:分别测量四个三角形对应的边及角,判断是否可用“SAS、ASA或AAS”判定全等。
引导:上述同学都采用了实验法,存在误差,那么如何利用推理论证的方法验证呢
③一种探索——课堂因你而鲜活
师:把连接三角形两边中点的线段叫做三角形的中位线。(板书)
问题:三角形的中位线与第三边有怎样的关系呢 在前面图l中你能发现什么结论呢 (学生的思维开始活跃起来,同学之间开始互相讨论,积极发言)
猜想:三角形的中位线平行于第三边,且等于第三边的一半。(板书)
师:如何证明这个猜想的命题呢
生:先将文字问题转化为几何问题然后证明。
已知:DE是ABC的中位线,求证:DE//BC、DE--0.5BC。学生思考后教师启发:要证明两条直线平行,可以利用。三线八角”的有关内容进行转化,而要证明一条线段的长等于另一条线段长度的一半,可采用将较短的线段延长一倍,或者截取较长线段的一半等方法进行转化归纳。(学生积极讨论,得出几种常用方法.大致思路如下)
生l:延长DE到F使EF=DE.连接CF
问题:三角形的中位线与中线有什么区别与联系呢
容易得出如下事实:都是三角形内部与边的中点有关的线段。但中位线平行于第三边,且等于第三边的一半,三角形的一条中位线与第三边上的中线互相平分。(学生交流、探索、思考、验证)
⑤一种照应——课堂因你而完整
问题:你能利用三角形中位线定理说明本节课开始提出的趣题的合理性吗 (学生争先恐后回答.课堂气氛活跃)
⑥一句总结——课堂因你而彰显无穷魅力
学生总结本节内容:三角形的中位线和三角形中位线定理。(另附作业)
⑦课后反思
本节课以“如何将一个任意三角形分为四个全等的三角形”这一问题为出发点,以平行四边形的性质定理和判定定理为桥梁,探究了三角形中位线的基本性质和应用。在本节课中,学生亲身经历了“探索一发现一猜想一证明”的探究过程,体会了证明的必要性和证明方法的多样性。在此过程中,笔者注重新旧知识的联系,同时强调转化、类比、归纳等数学思想方法的恰当应用,达到了预期的目的。
你可能感兴趣的试题
教师职业道德区别于其他职业道德的显著标志就是( )。
-
- A.为人师表
- B.清正廉洁
- C.敬业爱业
- D.团结协作
- 查看答案
在教育史上主张“不愤不启,不悱不发”的教育家是()。
-
- A.孔子
- B.孟子
- C.荀子
- D.韩非子
- 查看答案
心理学家所说的“危险期”或“心理断乳期”是指( )。
-
- A.童年期
- B.少年期
- C.青年期
- D.成年期
- 查看答案
教育工作中做到“因材施教”、“长善救失”符合年轻一代身心发展的( )。
-
- A.顺序性
- B.个别差异性
- C.不平衡性
- D.互补性
- 查看答案
德育过程与品德形成过程的关系是( )。
-
- A.是一致的,可以等同
- B.教育与发展的关系
- C.相互促进的关系
- D.相互包容的关系
- 查看答案