问题:
(1)教师l主要按照教科书提供的解决问题的方法组织课堂教学,教师2没有完全按照教科书组织教学,请对两位教师的做法加以评价;(5分)
(2)为了引发学生积极思考、领悟数学思想,从处理好课堂教学中预设与生成关系的视角,对两位教师的教学作评析;(10分)
(3)给出运用函数证明该不等式的方法,并简要说明该方法的数学教学价值。(5分)
正确答案及解析
正确答案
解析
(1)教师1的教法是传统的教学方法,比较死板,没有认识到学生的认知水平,没有考虑到学生之间的个体差异。优点是在一个例题结束后,教师布置一道练习题进行巩固练习。教师2的教学完全符合新课标下的教学方式,将课堂交给学生,以学生为主体,老师为主导,引导学生诱发思考,循环渐进的启发学生,充分考虑到学生的个体差异,帮助学生打开思路。在课堂中,采用师生互动合作的学习方式,并将学生解答方法展现在黑板上,最后让学生补充其他的解题方法,充分尊重每一个学生的想法。但是这位老师的不足是在问答题时没有考虑到用函数的方法解决此不等式,课前没有考虑到解不等式的函数思想方法。
(2)教师l没有辩证的理解“预设与生成”的关系,只有“预设”、完全封闭、一切尽在“教师掌控之中,的现象,没有结合学生的认知水平和学生间的个体差异,造成不适当的“生成”,缺乏教师引导,影响课堂教学质量。
教师2体现了对教学过程的“预设”,集中表现在:能根据所教班级学生的实际情况,选择贴切的教学素材和教学流程,准确地体现基本理念和内容标准规定的要求。并把“预设”转化为实际的教学活动,在这个案例的过程中,师生双方的互动“生成”一些新的教学资源,教师2能够及时把握,因势利导,适时调整预案.使教学活动收到更好的效果。但是教师2不足的是没有仔细研究教材,忽了用函数问题解答此不等式,没有把本节课进行适当拓展和深化。
运用函数证明该不等式的方法,使我们意识到不等式与函数是紧密联系的,很多不等式问题往往有相关的函数背景,可以利用函数的思想解决。另一方面可以培养了思维能力和逻辑推理能力。
包含此试题的试卷
你可能感兴趣的试题
案例:阅读下列教学片段。
呈现问题情境:某股民在上星期五以每股27元的价格买进某股票1000股。该股票的涨跌情况如下表(单位:元)。
师:星期四收盘时,每股多少元
提问生1、2(疑惑不解状)。
生3:27—2.5=25.5(元)。
师:星期四收盘价实际上就是求有理数的和,应该为:27+4+4.5—1—2.5=32(元)。
师:周二收盘价最高为35.5元;周五最低为26元。
师:已知该股民买进股票时付了3%0的交易税,卖出股票时需付成效额3%0的手续费和2‰的交易税。如果该股民在星期五收盘前将全部股票卖出,他的收益情况如何
提问生4、5(困惑状)。
生6:买入:27×1000x(1+3%0)=27081(元);
卖出:26×1000×(1+3‰+2‰)=26130(元);
收益:26130—27081=一951(元)。
师:生6的解答错了,正确解答为::
买入股票所花费的资金总额为:27×1000x(1+3%o)=27081(元);
卖出股票时所得资金总额为:26×1000×(1—3%0~2%o)=25870(元);
上周交易的收益为:25870—27081=一1211(元),实际亏损了l 211元。
师:请听明白的同学举手。
此时课堂上约有三、四个学生举起了手,绝大部分学生眼中闪烁着疑惑之意。有些学生在窃窃私语,有一学生轻声道:“老师,我听不懂!”……少部分学生烦燥之意露于言表。
问题:
(1)案例中老师犯了什么错误
(2)该案例中学生的数学困惑是什么
(3)该案例的启示是什么
启示是什么
- 查看答案
初中“变量与函数”设定的教学目标如下:
①运用丰富的实例,使学生在具体情境中领悟函数概念的意义,了解常量与变量的含义.
能分清实例中的常量与变量,了解自变量与函数的意义:
②通过动手实践与探索,学生参与变量的发现和函数概念的形成过程.以提高分析问题和解决问题的能力:
③引导学生探索实际问题中的数量关系,培养对学习的兴趣和积极参与数学活动的热情。
在解决问题的过程中体会数学的应用价值并感受成功的喜悦。建立自信心。
完成下列任务:
(1)根据教学目标①,给出至少两个实例,并说明设计意图。
(2)根据教学目标②,给出至少两个实例,并说明设计意图。
(3)根据教学目标③,设计两个问题,并说明设计意图。
(4)本节课的教学重点是什么
(5)作为初中阶段的基础内容,其难点是什么
(6)本节课的教学内容对后续哪些内容的学习有直接影响
- 查看答案
目前我们的新课程改革已基本进行了一轮,从你的教学实践过程中,你觉得义务教育的数学课程标准中有哪些理念和内容,或者在我们具体执行课程标准的教学过程中有哪些做法,可以进行修改或改进 提出你的修改建议和理由。
- 查看答案
椭圆的焦点分别是F1和F2,已知椭圆的离心率
.过中心O
作直线与椭圆交于A,B两点,O为原点,若△ABF2的面积是20。
(1)求m的值;
(2)直线AB的方程。
- 查看答案
设函数f(x)在定义域,上的导数大于零,若对任意的
处的切线与直线x≈x0及戈轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式。
- 查看答案