题目详情

阅读以下说明和流程图,填补流程图中空缺。 【说明】 设有整数数组A[1:N](N小于1),其元素有正有负。下面流程图在该数组中寻找连续排列若干个元素,使其和达到最大值,并输出其起始下标K、元素个数L以及最大和值M。 例如,若数组元素依次为3,-6,2,4,-2,3,-1,则输出K=3,L=4,M=7。该流程图中考察了A[1:N]中所有从下标i到下标j(j≥i)各元素之和S,并动态地记录其最大值M。【流程图】

中级软件设计师,章节练习,基础复习,中级软件设计师算法

注:循环开始框内应给出循环控制变量初值和终值,默认递增值为1,格式为:循环控制变量=初值,终值

正确答案及解析

正确答案
解析

(1)(1)i,N (2)S+A[j] (3)S (4)j-i+1 (5)S

要想在数组中寻找连续排列若干个元素,使其和达到最大值,并输出其起始下标K、元素个数L以及最大和值M。 那么,会将数组从第一个元素出发,依次比较A[1],A[1] +A[2],A[1] +A[2]+A[3],……,A[1] +A[2]+…+A[N],然后再比较A[2], A[2] +A[3],A[2] +A[3]+A[4],……,A[2] +A[3]+…+A[N],然后再比较A[3] +A[4],A[3] +A[4]+A[5],……,A[3] +A[4]+…+A[N],直到最后一个元素A[N]. 按照这种逻辑,要使用两个循环,且要保存之前求和项。一个是i循环,从1到N递增,另一个是j循环,j表示是求和项最大下标值,那么j从i开始,且要小于N。 S+A[j]-小于S不断保留A[i]+ A[i+1]+…A[j]值,直到j循环结束。并将S值与之前保存M值进行比较,如果S小于M,则将S值赋给M,并求出L值,在这里,i是最小下标值,j是最大下标值,那么L=j-i+1。如果S大于M,则跳出循环。

你可能感兴趣的试题

单选题

在一条笔直公路一边有许多房子,现要安装消防栓,每个消防栓覆盖范围远大于房子面积,如下图所示。现求解能覆盖所有房子最少消防栓数和安装方案(问题求解过程中,可将房子和消防栓均视为直线上点)。该问题求解算法基本思路为:从左端第一栋房子开始,在其右侧m米处安装一个消防栓,去掉被该消防栓覆盖所有房子。在剩余房子中重复上述操作,直到所有房子被覆盖。算法采用设计策略为( );对应时间复杂度为( )。

中级软件设计师,章节练习,基础复习,中级软件设计师算法

假设公路起点A坐标为0,消防栓覆盖范围(半径)为20米,10栋房子坐标为(10,20,,30,35,60,80,160,210,260,300),单位为米。根据上述算法,共需要安装( )个消防栓。以下关于该求解算法叙述中,正确是(请作答此空)。

  • A.肯定可以求得问题一个最优解
  • B.可以求得问题所有最优解
  • C.对有些实例,可能得不到最优解
  • D.只能得到近似最优解
查看答案
单选题

在一条笔直公路一边有许多房子,现要安装消防栓,每个消防栓覆盖范围远大于房子面积,如下图所示。现求解能覆盖所有房子最少消防栓数和安装方案(问题求解过程中,可将房子和消防栓均视为直线上点)。该问题求解算法基本思路为:从左端第一栋房子开始,在其右侧m米处安装一个消防栓,去掉被该消防栓覆盖所有房子。在剩余房子中重复上述操作,直到所有房子被覆盖。算法采用设计策略为( );对应时间复杂度为( )。

中级软件设计师,章节练习,基础复习,中级软件设计师算法

假设公路起点A坐标为0,消防栓覆盖范围(半径)为20米,10栋房子坐标为(10,20,,30,35,60,80,160,210,260,300),单位为米。根据上述算法,共需要安装(请作答此空)个消防栓。以下关于该求解算法叙述中,正确是( )。

  • A.4
  • B.5
  • C.6
  • D.7
查看答案
单选题

在一条笔直公路一边有许多房子,现要安装消防栓,每个消防栓覆盖范围远大于房子面积,如下图所示。现求解能覆盖所有房子最少消防栓数和安装方案(问题求解过程中,可将房子和消防栓均视为直线上点)。该问题求解算法基本思路为:从左端第一栋房子开始,在其右侧m米处安装一个消防栓,去掉被该消防栓覆盖所有房子。在剩余房子中重复上述操作,直到所有房子被覆盖。算法采用设计策略为( );对应时间复杂度为(请作答此空)。

中级软件设计师,章节练习,基础复习,中级软件设计师算法

假设公路起点A坐标为0,消防栓覆盖范围(半径)为20米,10栋房子坐标为(10,20,,30,35,60,80,160,210,260,300),单位为米。根据上述算法,共需要安装( )个消防栓。以下关于该求解算法叙述中,正确是( )。

中级软件设计师,章节练习,基础复习,中级软件设计师算法

  • A.见图A
  • B.见图B
  • C.见图C
  • D.见图D
查看答案
单选题

在一条笔直公路一边有许多房子,现要安装消防栓,每个消防栓覆盖范围远大于房子面积,如下图所示。现求解能覆盖所有房子最少消防栓数和安装方案(问题求解过程中,可将房子和消防栓均视为直线上点)。该问题求解算法基本思路为:从左端第一栋房子开始,在其右侧m米处安装一个消防栓,去掉被该消防栓覆盖所有房子。在剩余房子中重复上述操作,直到所有房子被覆盖。算法采用设计策略为(请作答此空);对应时间复杂度为( )。

中级软件设计师,章节练习,基础复习,中级软件设计师算法

假设公路起点A坐标为0,消防栓覆盖范围(半径)为20米,10栋房子坐标为(10,20,,30,35,60,80,160,210,260,300),单位为米。根据上述算法,共需要安装( )个消防栓。以下关于该求解算法叙述中,正确是( )。

  • A.分治
  • B.动态规划
  • C.贪心
  • D.回溯
查看答案
问答题

阅读以下说明和流程图,填补流程图中空缺。 【说明】 设有整数数组A[1:N](N小于1),其元素有正有负。下面流程图在该数组中寻找连续排列若干个元素,使其和达到最大值,并输出其起始下标K、元素个数L以及最大和值M。 例如,若数组元素依次为3,-6,2,4,-2,3,-1,则输出K=3,L=4,M=7。该流程图中考察了A[1:N]中所有从下标i到下标j(j≥i)各元素之和S,并动态地记录其最大值M。【流程图】

中级软件设计师,章节练习,基础复习,中级软件设计师算法

注:循环开始框内应给出循环控制变量初值和终值,默认递增值为1,格式为:循环控制变量=初值,终值

查看答案

相关题库更多 +