
问题: (1)指出该学生解此方程时出现了错误,并分析其原因(7 分) (2)给出上述方程的一般解法,帮助学生解除疑惑(7 分) (3)简述中学阶段解方程常用的数学思想方法(6 分)
正确答案及解析
正确答案
解析
(1)学生解方程时并没有按照分式方程的标准解法,而是直接移项再去化简分式的分子和分母;解分式方程是八年级 学生重点学习的一个内容,同样也是一个难点, 学生出现这种问题可能在于运算基础不够扎实,想要直接约去分 式的分子与分母,一定要保证约去的式子不能为 0。 (2)原式两边乘得,化简可得,解得,最后将带入原方程验增根,发现,所以该方程无解。 (3)在中学阶段常用的解方程的数学思想方法有很多,常用的有整体的思想,比如换元法, 换元法是在解方程中常 用的一种方法,即对结构较复杂的方程组,若把其中的某些部分看成一个整体,用新的字母代替,从而得到新的方 程解题方法,换元法 能使复杂的问题简单化;其次还有方程思想,在解决某些问题时,从题目中的已知量和未知量之间的数量关系入手, 找出相等的关系,运用数学语言将相等关系转化成新的方程或方程组,再通过新的方程与方程组使问题解诀。对于 解方程还常常使用到化归的思想,划归思想是把所要解决的问题转化归结为另一个较易解决的问题或已经解决的问 题,即化难为易、化繁为简,化未知为已知。
包含此试题的试卷
你可能感兴趣的试题
《义务教育数学课程标准(2011年版)》强调,课程内容要反映社会的需要、数学的特点,要符合学生的认知规律。课程内容的组织要重视过程,处理好()的关系。
-
- A.预设与生成
- B.抽象与具体
- C.数学与实际生活
- D.过程与结果
- 查看答案
设α是某一方程组的解向量,k为某一常数,则kα也为该方程组的解向量。( )
- 查看答案

-
- A.0
- B.1
- C.2
- D.3
- 查看答案
案例:
在有理数运算的课堂教学片段中,某学生的板演如下:

针对该学生的解答,教师进行了如下教学:
师:请仔细检查你的演算过程,看是否正确无误?
生:好像正确吧。

请分析例题1、例题2中每一步运算的依据。(10分)
- 查看答案
初中数学课程是一门国家课程,其主要内容包括课程目标、教学内容、教学过程和( )等
-
- A.评价手段
- B.教学方法
- C.教学手段
- D.教学实践
- 查看答案