正弦函数连续的证明主要用正弦函数的和差化积公式.再结合夹逼法则进行证明:指数
设M、N为随机事件,P(N)>0,且条件概率P(M|N)=1,则必有
P(MUN)=P(M)+P(N)-P(MN),P(MUN)=P(M)。
《普通高中数学课程标准(实验)》的课程目标中提出了五种基本能力,下列不属于这五种基本能力的是( )。
五种基本能力是空间想象、抽象概括、推理论证、运算求解和数据处理。
下列陈述可以作为数学定义的有( )。
①不在任何一个平面内的两条直线叫异面直线;
②无穷小量是无限趋向于0的量
③渐近线是与曲线很接近的直线
2、3是概念的性质。
下列命题不正确的是( )。
平面与圆锥的交线可能是圆、椭圆、三角形等形状,所以C不对。
设M为3×3实数矩阵,a为M的实特征值λ的特征向量,则下列叙述正确的是( )。
由已知得Ma=Aa,所以Ma与a共线。
{图1}
结合实例简要分析数学概念教学的基本要求。
本题主要考查对概念教学的把握。
在实际教学中,教师可以根据学生和当地的实际情况改革教材,对原有教材重新进行调整和组合。这就使教材有了一个比较好的知识结构。而要把知识的基本结构教给学生,关键在于要有好的教学方法,在教法改革中充分运用知识迁移的原理,突出基本概念的教学,加强知识间的内在联系,适时进行渗透,使前面的学习为顺利地学习后面的知识打好基础,把新旧知识联系起来,使学生形成一个最佳的认知结构。这里不是一般地教给学生一个个知识,而是教给学生知识的基本结构。这种把教知识变为教知识结构,是教学中特别重视的环节。
简述高中数学课程的地位和作用。
高中数学课程是义务教育后普通高级中学的一门主要课程,它包含了数学中最基本的内容,是培养公民素质的基础课程。高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。高中数学课程有助于学生认识数学的应用价值,增强应用意识,形成解决简单实际问题的能力。高中数学课程是学习高中物理、化学、技术等课程和进一步学习的基础。同时,它为学生的终身发展,形成科学的世界观、价值观奠定基础,对提高全民族素质具有重要意义。
《普通高中数学课程标准(实验)》指出:“学生对基础知识和基本技能的理解与掌握是数学教学的基本要求,也是评价学生学习的基本内容;评价要注重对数学本质的理解和思想方法的把握,避免片面强调机械记忆,模仿以及复杂技巧。”请分别给出评价学生基础知识与基本技能掌握情况的具体建议,并举例说明。
(1)证明α+β是Q(χ)=0的根;(3分)
(2)写出以α3和β3为根的一元二次方程。(4分)
设平面闭区域D={(χ,y)|χ-y+1≥0,χ+y-3≤0,且χ+3y-3≥0}
求函数f(χ,y)=3χ-y在D上的最小值,并说明理由。
设质点作匀速圆周运动,其轨迹为r (t)=(χ(t),y(t)),其中χ(t)=Rcosωt,y(t)=Rsinωt,速度和加速度分别定义为v(t)=(χ′(t),y′(t)),和a(t)=(χ"(t),y" (t))。
(1)求v(t)和a(t);(4分)
(3)若一飞行器绕地球作匀速圆周运动且只受重力作用(高度可忽略不计),求其飞行速度的大小(设地球半径为6400千米,重力加速度为g=10米/秒2)。(3分)
“数列”是高中数学必修5的内容。《普通高中数学课程标准(实验)》要求学生能“通过对日常生活中大量实际问题的分析,建立等差数列和等比数列这两种数列模型;在具体的问题情境中.发现数列的等差关系或等比关系,并能用有关知识解决相应的问题。”
(1)请设计一道能用等比数列知识解决的实际问题并求解;(20分)
(要求:给出问题情境;抽象出数量关系;建立数学模型;写出解答过程、讨论和反思。)
(2)根据上面的问题情境设计一道开放题或探索题。(10分)
(1)①创设情境,提出问题
在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢
问题1:同学们,你们知道西萨要的是多少粒小麦吗
(设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性。故事内容紧扣本节课的主题与重点。)
师生互动:引导学生写出麦粒总数l+2+22+23+……+263。带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和。这时对他们的这种思路给予肯定。
(设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的无用功。急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑颀理成章的事,教师为什么不相加而马上相减呢 在这个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形虞过程的氛围.突破学生学习的障碍。同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决目囊的新方法,为后面的教学埋下伏笔。)
②师生互动,探究问题
在肯定他们的思路后,接着问:1+2+22+23+……+263是什么数列 有何特征 应归结为什么数学问题呢
学情预设:探讨1:设S64=1+2+22+23+……+263记(1)式,注意观察每一项的特征,有何联系 (学生会发现,后一项都是前一项的2倍)
探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有2S64=2+22+23+.....263+264,记为(2)式。比较(1)(2)两式,你有什么发现
(设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减’.在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章.从面抓住培养学生的辩证思维能力的良好契机。)
经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了。得到:S64=264-1.老师指出:这就是错位相减法,并要求学生纵观全过程。
反思:为什么(1)式两边要同乘以2呢
(设计意图:经过繁难的计算之后,突然发现上述解法,不禁惊呼:真是太简单了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心。)
③故事结束,首尾呼应
最后我们回到故事中的问题,我们可以计算出国王奖赏的小麦约为1.84×1019粒,大约7000亿吨,用这么多小麦能从地球到太阳铺设一条宽l0米、厚8米的大道,大约是全世界一年粮食产量的459倍,显然国王兑现不了他的承诺。
(设计意图:把引入课题时的悬念给予释疑,有助于学生克服疲倦、继续积极思维。)④教学反思对公式的教学,要使学生掌握与理解公式的来龙去脉,掌握公式的推导方法,理解公式的成立条件,充分体现公式之间的联系。在教学中,采用“问题——探究”的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段。
(2)引导学生将结论一般化,设等比数列{an},首项为a1,公比为q,如何求前项和Sn 这里,让学生自主完成.并喊一名学生上黑板,然后对个别学生进行指导。
(设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感。)
再次追问:结合等比数列的通项公式an=a1qn-1,如何把Sn用a1、an、q表示出来 (引导学生得出公式的另一形式)
(设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力。这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用。)
案例:某教师在进行幂函数教学时,给学生出了如下一道练习题:
已知(a+1)-2<(1-2a)-2,求a的取值范围。
某学生的解答过程如下:
问题:(1)指出该生解题过程中的错误,分析其错误原因;(8分)
(2)给出你的正确解答(限用幂函数的图像和性质来解答);(8分)
(3)指出你解题所运用的数学思想方法。(4分)
您目前分数偏低,基础较薄弱,建议加强练习。