地球上46亿年历史中的最大极寒,莫过于元古代的那次“雪球事件”。雪球事件发生在距今7亿年前,全球冰川突如其来地尘封了一切。先是从两极开始,冰川逐渐向低纬度进军,直至把热带的暖风与浪花全部凝固在肃杀的极寒中。雪球事件来去匆匆,在元古代末期留下印记后,便马上消失在一如既往的温暖中。
人们究竟是靠什么线索,断言出当时的地球就是这么一个宇宙级的大雪球呢?靠岩石。只有岩石的残片,是唯一能够穿越时空,将尘封往事保留至今的星球遗迹。
岩石中的沉积岩(由地表沉积物压实固结而形成的岩类)是反映当时地表环境的直观快照。一层层的沉积岩构成地层,一套套地层又构成大陆表面直接披覆的“外皮”。所谓大陆,不外乎是蓝海中一座座庞大的“移动方舟”,它们会漂移、会裂解,也会在偶然的时段,合众为一。科学家们有一套完善的方法,揭示大陆上的每一块沉积岩形成于何时、何地以及何种环境,并以此还原大陆漂移和环境变迁的历史:利用层序律和同位素时钟,能够确定出地层形成的年代;利用沉积岩中含磁矿晶的排列方位,能够还原出大陆当时所处的纬度;岩石的结构与构造可以揭露沉积物生成的环境;而地层间的叠置关系则记录着环境的演化与变迁。
板块漂移可能是雪球事件的始作俑者。在当时的地球上,各个板块已经聚合为联合大陆,处于中低纬度间。大陆的表面是岩石,对太阳光的反照率比大洋要强得多,而低纬度偏偏又是地球接受太阳光最多的区域。陆地增加的直接后果,便是单位时间内整个地球系统获得的太阳能更少了。地表的温度输入主要靠阳光,“净收入”的减少,是全球变冷的第一推力。
地表之上,还有大气层。温度的输入是一回事,但维持又是另外一回事。地表温度的维持主要靠温室气体——比如二氧化碳(CO?)等对太阳能的锁定。大量陆地聚集到低纬度,对大气中CO?的含量是一个极为负面的影响因素。热带降雨活跃、大气潮湿,导致大陆岩石圈风化作用空前活跃。在风化作用中,大气中的O?、CO?、H?O等成分被消耗,并随着生成物进入岩石圈,从而退出大气循环。当大气中“净流通”的CO?等温室气体减少,温室效应便随之减弱。环境温度逐渐降低,冰川一步步生成并扩大,冰期就这样悄然而至。
到了冰川扩大的时候,事情就变得更加不可挽回了,冰川本身便是上述合力的结果,但它也恰恰是全球持续变冷最有效的诱因,回到反照率这个概念上,说到反射太阳光,无论海水也好,岩石也罢,又有什么能跟晶莹的冰雪相比?另外,当水体扩大结冰,蒸发会越来越少,大气中能够维持温度的湿润水汽也骤然下降,反照率的激增和蒸发率的骤减,直接使冷室效应进入了一个持续堆栈的死循环。环境模拟表明,当地球表面有一半被冰覆盖的时候,全球冻结将成为不可逆转的趋势,一个冰雪满布的地球,将是必然出现的结局。
那么谁又是当时地球的破冰者呢?
不是太阳,也不是撞击的天体,而是地球自己。这是一颗有着活跃内动力的热行星,而这份终将表现出来的力量,叫做火山作用。火山的及时救援,让地球从全面的凝结中苏醒了过来。被称为极端火山作用的事件,无疑是生物圈的灭绝级大杀器。然而此时,这个让生物圈闻风丧胆的武器,却成了把地球从雪球中拯救出来的功臣。当然,对付冰雪的套路其实也没什么新鲜的:不是靠岩浆的温度来直接烘烤,而是靠输出气体来间接改变大气圈的成分。
那些被封进岩石圈从而退出大气循环的温室气体们大概不会忘记,地球本身其实是一个更加庞大的循环系统。气体被锁进岩石圈?不要紧。岩石还要在板块构造的循环中被带回地幔里。当岩石的枷锁融化为流动的岩浆,气体也就重获了自由。随后,等火山作用适时打开重归地表的通道,这些溶于岩浆的挥发物,便会随着汹涌的热流一起回到大气层。
雪球时期,由于冰盖的影响,全球的岩石风化率进入了一个历史低位,地表温室气体的消耗因素几乎“触底”。此时,火山作用的净输入便显得尤为突出了。火山持续溢气,大气中的温室气体越聚越多,当它们的占比重新达到足以封存阳光,使平均温度能够重回冰点之上时,经历了“冬眠”之后,生物圈获得了一场迸发式的发展,这种反应远远超出了元古代长期以来所表现出的样子。
一个从雪球中醒来的生物圈,将要给地球带来多大的变革呢?
长久以来被单细胞生物所统治的时空,随着雪球事件的结束而一并瓦解。多细胞的复杂生命,辐射性地扩展到了地球的每一个角落。生命从此成为地球的“显学”。这5.4亿年,是我们自己的故事。生命见证了一个个优势类群的崛起,也见证了惨不忍睹的灭绝。高山依然在隆升和剥蚀,海洋也依然在扩张和闭合,但是,唯有那神秘的雪球,却再也没有重回世间。
(2)岩石圈风华对大气层的影响有:
在第五段中提到“当大气中‘净流通’的……等温室气体的减少,温室效应便随之减弱”因此,C正确。“在风化作用中,大气中的O2、CO2……并随着生成物进入岩石圈,从而退出大气循环”,因此,D正确。
地球上46亿年历史中的最大极寒,莫过于元古代的那次“雪球事件”。雪球事件发生在距今7亿年前,全球冰川突如其来地尘封了一切。先是从两极开始,冰川逐渐向低纬度进军,直至把热带的暖风与浪花全部凝固在肃杀的极寒中。雪球事件来去匆匆,在元古代末期留下印记后,便马上消失在一如既往的温暖中。
人们究竟是靠什么线索,断言出当时的地球就是这么一个宇宙级的大雪球呢?靠岩石。只有岩石的残片,是唯一能够穿越时空,将尘封往事保留至今的星球遗迹。
岩石中的沉积岩(由地表沉积物压实固结而形成的岩类)是反映当时地表环境的直观快照。一层层的沉积岩构成地层,一套套地层又构成大陆表面直接披覆的“外皮”。所谓大陆,不外乎是蓝海中一座座庞大的“移动方舟”,它们会漂移、会裂解,也会在偶然的时段,合众为一。科学家们有一套完善的方法,揭示大陆上的每一块沉积岩形成于何时、何地以及何种环境,并以此还原大陆漂移和环境变迁的历史:利用层序律和同位素时钟,能够确定出地层形成的年代;利用沉积岩中含磁矿晶的排列方位,能够还原出大陆当时所处的纬度;岩石的结构与构造可以揭露沉积物生成的环境;而地层间的叠置关系则记录着环境的演化与变迁。
板块漂移可能是雪球事件的始作俑者。在当时的地球上,各个板块已经聚合为联合大陆,处于中低纬度间。大陆的表面是岩石,对太阳光的反照率比大洋要强得多,而低纬度偏偏又是地球接受太阳光最多的区域。陆地增加的直接后果,便是单位时间内整个地球系统获得的太阳能更少了。地表的温度输入主要靠阳光,“净收入”的减少,是全球变冷的第一推力。
地表之上,还有大气层。温度的输入是一回事,但维持又是另外一回事。地表温度的维持主要靠温室气体——比如二氧化碳(CO?)等对太阳能的锁定。大量陆地聚集到低纬度,对大气中CO?的含量是一个极为负面的影响因素。热带降雨活跃、大气潮湿,导致大陆岩石圈风化作用空前活跃。在风化作用中,大气中的O?、CO?、H?O等成分被消耗,并随着生成物进入岩石圈,从而退出大气循环。当大气中“净流通”的CO?等温室气体减少,温室效应便随之减弱。环境温度逐渐降低,冰川一步步生成并扩大,冰期就这样悄然而至。
到了冰川扩大的时候,事情就变得更加不可挽回了,冰川本身便是上述合力的结果,但它也恰恰是全球持续变冷最有效的诱因,回到反照率这个概念上,说到反射太阳光,无论海水也好,岩石也罢,又有什么能跟晶莹的冰雪相比?另外,当水体扩大结冰,蒸发会越来越少,大气中能够维持温度的湿润水汽也骤然下降,反照率的激增和蒸发率的骤减,直接使冷室效应进入了一个持续堆栈的死循环。环境模拟表明,当地球表面有一半被冰覆盖的时候,全球冻结将成为不可逆转的趋势,一个冰雪满布的地球,将是必然出现的结局。
那么谁又是当时地球的破冰者呢?
不是太阳,也不是撞击的天体,而是地球自己。这是一颗有着活跃内动力的热行星,而这份终将表现出来的力量,叫做火山作用。火山的及时救援,让地球从全面的凝结中苏醒了过来。被称为极端火山作用的事件,无疑是生物圈的灭绝级大杀器。然而此时,这个让生物圈闻风丧胆的武器,却成了把地球从雪球中拯救出来的功臣。当然,对付冰雪的套路其实也没什么新鲜的:不是靠岩浆的温度来直接烘烤,而是靠输出气体来间接改变大气圈的成分。
那些被封进岩石圈从而退出大气循环的温室气体们大概不会忘记,地球本身其实是一个更加庞大的循环系统。气体被锁进岩石圈?不要紧。岩石还要在板块构造的循环中被带回地幔里。当岩石的枷锁融化为流动的岩浆,气体也就重获了自由。随后,等火山作用适时打开重归地表的通道,这些溶于岩浆的挥发物,便会随着汹涌的热流一起回到大气层。
雪球时期,由于冰盖的影响,全球的岩石风化率进入了一个历史低位,地表温室气体的消耗因素几乎“触底”。此时,火山作用的净输入便显得尤为突出了。火山持续溢气,大气中的温室气体越聚越多,当它们的占比重新达到足以封存阳光,使平均温度能够重回冰点之上时,经历了“冬眠”之后,生物圈获得了一场迸发式的发展,这种反应远远超出了元古代长期以来所表现出的样子。
一个从雪球中醒来的生物圈,将要给地球带来多大的变革呢?
长久以来被单细胞生物所统治的时空,随着雪球事件的结束而一并瓦解。多细胞的复杂生命,辐射性地扩展到了地球的每一个角落。生命从此成为地球的“显学”。这5.4亿年,是我们自己的故事。生命见证了一个个优势类群的崛起,也见证了惨不忍睹的灭绝。高山依然在隆升和剥蚀,海洋也依然在扩张和闭合,但是,唯有那神秘的雪球,却再也没有重回世间。
(1)雪球事件瓦解的原因有:
在小标题“那么谁又是当时地球的破冰者呢”后面,提到“不是太阳,也不是撞击的天体,而是地球自己。这是一颗有着活跃内动力的热行星,而这份终将表现出来的力量,叫做火山作用”,因此,A正确。第九节中提到“气体被锁进岩石圈?不要紧。”“随后,等火山作用适时打开重归地表的通道,这些溶于岩浆的挥发物,便会随着汹涌的热流一起回到大气层”,因此,B正确。第十节提到“雪球时期,由于大量冰盖的影响,全球的岩石风华率进入了一个历史低位,地表温室气体的消耗因素几乎触底。此时,火山作用的净输入便显得尤为突出了”,从这句话可以看出地球在雪期和破冰期的一个零界点时,受风化作用降低、温室气体消耗减少和火山作用的影响使得地球破冰,因此CD正确。
地球上46亿年历史中的最大极寒,莫过于元古代的那次“雪球事件”。雪球事件发生在距今7亿年前,全球冰川突如其来地尘封了一切。先是从两极开始,冰川逐渐向低纬度进军,直至把热带的暖风与浪花全部凝固在肃杀的极寒中。雪球事件来去匆匆,在元古代末期留下印记后,便马上消失在一如既往的温暖中。
人们究竟是靠什么线索,断言出当时的地球就是这么一个宇宙级的大雪球呢?靠岩石。只有岩石的残片,是唯一能够穿越时空,将尘封往事保留至今的星球遗迹。
岩石中的沉积岩(由地表沉积物压实固结而形成的岩类)是反映当时地表环境的直观快照。一层层的沉积岩构成地层,一套套地层又构成大陆表面直接披覆的“外皮”。所谓大陆,不外乎是蓝海中一座座庞大的“移动方舟”,它们会漂移、会裂解,也会在偶然的时段,合众为一。科学家们有一套完善的方法,揭示大陆上的每一块沉积岩形成于何时、何地以及何种环境,并以此还原大陆漂移和环境变迁的历史:利用层序律和同位素时钟,能够确定出地层形成的年代;利用沉积岩中含磁矿晶的排列方位,能够还原出大陆当时所处的纬度;岩石的结构与构造可以揭露沉积物生成的环境;而地层间的叠置关系则记录着环境的演化与变迁。
板块漂移可能是雪球事件的始作俑者。在当时的地球上,各个板块已经聚合为联合大陆,处于中低纬度间。大陆的表面是岩石,对太阳光的反照率比大洋要强得多,而低纬度偏偏又是地球接受太阳光最多的区域。陆地增加的直接后果,便是单位时间内整个地球系统获得的太阳能更少了。地表的温度输入主要靠阳光,“净收入”的减少,是全球变冷的第一推力。
地表之上,还有大气层。温度的输入是一回事,但维持又是另外一回事。地表温度的维持主要靠温室气体——比如二氧化碳(CO?)等对太阳能的锁定。大量陆地聚集到低纬度,对大气中CO?的含量是一个极为负面的影响因素。热带降雨活跃、大气潮湿,导致大陆岩石圈风化作用空前活跃。在风化作用中,大气中的O?、CO?、H?O等成分被消耗,并随着生成物进入岩石圈,从而退出大气循环。当大气中“净流通”的CO?等温室气体减少,温室效应便随之减弱。环境温度逐渐降低,冰川一步步生成并扩大,冰期就这样悄然而至。
到了冰川扩大的时候,事情就变得更加不可挽回了,冰川本身便是上述合力的结果,但它也恰恰是全球持续变冷最有效的诱因,回到反照率这个概念上,说到反射太阳光,无论海水也好,岩石也罢,又有什么能跟晶莹的冰雪相比?另外,当水体扩大结冰,蒸发会越来越少,大气中能够维持温度的湿润水汽也骤然下降,反照率的激增和蒸发率的骤减,直接使冷室效应进入了一个持续堆栈的死循环。环境模拟表明,当地球表面有一半被冰覆盖的时候,全球冻结将成为不可逆转的趋势,一个冰雪满布的地球,将是必然出现的结局。
那么谁又是当时地球的破冰者呢?
不是太阳,也不是撞击的天体,而是地球自己。这是一颗有着活跃内动力的热行星,而这份终将表现出来的力量,叫做火山作用。火山的及时救援,让地球从全面的凝结中苏醒了过来。被称为极端火山作用的事件,无疑是生物圈的灭绝级大杀器。然而此时,这个让生物圈闻风丧胆的武器,却成了把地球从雪球中拯救出来的功臣。当然,对付冰雪的套路其实也没什么新鲜的:不是靠岩浆的温度来直接烘烤,而是靠输出气体来间接改变大气圈的成分。
那些被封进岩石圈从而退出大气循环的温室气体们大概不会忘记,地球本身其实是一个更加庞大的循环系统。气体被锁进岩石圈?不要紧。岩石还要在板块构造的循环中被带回地幔里。当岩石的枷锁融化为流动的岩浆,气体也就重获了自由。随后,等火山作用适时打开重归地表的通道,这些溶于岩浆的挥发物,便会随着汹涌的热流一起回到大气层。
雪球时期,由于冰盖的影响,全球的岩石风化率进入了一个历史低位,地表温室气体的消耗因素几乎“触底”。此时,火山作用的净输入便显得尤为突出了。火山持续溢气,大气中的温室气体越聚越多,当它们的占比重新达到足以封存阳光,使平均温度能够重回冰点之上时,经历了“冬眠”之后,生物圈获得了一场迸发式的发展,这种反应远远超出了元古代长期以来所表现出的样子。
一个从雪球中醒来的生物圈,将要给地球带来多大的变革呢?
长久以来被单细胞生物所统治的时空,随着雪球事件的结束而一并瓦解。多细胞的复杂生命,辐射性地扩展到了地球的每一个角落。生命从此成为地球的“显学”。这5.4亿年,是我们自己的故事。生命见证了一个个优势类群的崛起,也见证了惨不忍睹的灭绝。高山依然在隆升和剥蚀,海洋也依然在扩张和闭合,但是,唯有那神秘的雪球,却再也没有重回世间。
火山作用对地球生命而言始终意味着灾难和灭绝。
错误
在文章的第10段,描述到“火山作用的净输出便显得尤为突出了……‘白地球’便开始融化。久违的蓝海出现,生命的家园复苏。生物圈获得了一场迸发式的发展”。所以题目中说火山作用对地球生命而言始终意味着灾难和灭绝明显错误。
地球上46亿年历史中的最大极寒,莫过于元古代的那次“雪球事件”。雪球事件发生在距今7亿年前,全球冰川突如其来地尘封了一切。先是从两极开始,冰川逐渐向低纬度进军,直至把热带的暖风与浪花全部凝固在肃杀的极寒中。雪球事件来去匆匆,在元古代末期留下印记后,便马上消失在一如既往的温暖中。
人们究竟是靠什么线索,断言出当时的地球就是这么一个宇宙级的大雪球呢?靠岩石。只有岩石的残片,是唯一能够穿越时空,将尘封往事保留至今的星球遗迹。
岩石中的沉积岩(由地表沉积物压实固结而形成的岩类)是反映当时地表环境的直观快照。一层层的沉积岩构成地层,一套套地层又构成大陆表面直接披覆的“外皮”。所谓大陆,不外乎是蓝海中一座座庞大的“移动方舟”,它们会漂移、会裂解,也会在偶然的时段,合众为一。科学家们有一套完善的方法,揭示大陆上的每一块沉积岩形成于何时、何地以及何种环境,并以此还原大陆漂移和环境变迁的历史:利用层序律和同位素时钟,能够确定出地层形成的年代;利用沉积岩中含磁矿晶的排列方位,能够还原出大陆当时所处的纬度;岩石的结构与构造可以揭露沉积物生成的环境;而地层间的叠置关系则记录着环境的演化与变迁。
板块漂移可能是雪球事件的始作俑者。在当时的地球上,各个板块已经聚合为联合大陆,处于中低纬度间。大陆的表面是岩石,对太阳光的反照率比大洋要强得多,而低纬度偏偏又是地球接受太阳光最多的区域。陆地增加的直接后果,便是单位时间内整个地球系统获得的太阳能更少了。地表的温度输入主要靠阳光,“净收入”的减少,是全球变冷的第一推力。
地表之上,还有大气层。温度的输入是一回事,但维持又是另外一回事。地表温度的维持主要靠温室气体——比如二氧化碳(CO?)等对太阳能的锁定。大量陆地聚集到低纬度,对大气中CO?的含量是一个极为负面的影响因素。热带降雨活跃、大气潮湿,导致大陆岩石圈风化作用空前活跃。在风化作用中,大气中的O?、CO?、H?O等成分被消耗,并随着生成物进入岩石圈,从而退出大气循环。当大气中“净流通”的CO?等温室气体减少,温室效应便随之减弱。环境温度逐渐降低,冰川一步步生成并扩大,冰期就这样悄然而至。
到了冰川扩大的时候,事情就变得更加不可挽回了,冰川本身便是上述合力的结果,但它也恰恰是全球持续变冷最有效的诱因,回到反照率这个概念上,说到反射太阳光,无论海水也好,岩石也罢,又有什么能跟晶莹的冰雪相比?另外,当水体扩大结冰,蒸发会越来越少,大气中能够维持温度的湿润水汽也骤然下降,反照率的激增和蒸发率的骤减,直接使冷室效应进入了一个持续堆栈的死循环。环境模拟表明,当地球表面有一半被冰覆盖的时候,全球冻结将成为不可逆转的趋势,一个冰雪满布的地球,将是必然出现的结局。
那么谁又是当时地球的破冰者呢?
不是太阳,也不是撞击的天体,而是地球自己。这是一颗有着活跃内动力的热行星,而这份终将表现出来的力量,叫做火山作用。火山的及时救援,让地球从全面的凝结中苏醒了过来。被称为极端火山作用的事件,无疑是生物圈的灭绝级大杀器。然而此时,这个让生物圈闻风丧胆的武器,却成了把地球从雪球中拯救出来的功臣。当然,对付冰雪的套路其实也没什么新鲜的:不是靠岩浆的温度来直接烘烤,而是靠输出气体来间接改变大气圈的成分。
那些被封进岩石圈从而退出大气循环的温室气体们大概不会忘记,地球本身其实是一个更加庞大的循环系统。气体被锁进岩石圈?不要紧。岩石还要在板块构造的循环中被带回地幔里。当岩石的枷锁融化为流动的岩浆,气体也就重获了自由。随后,等火山作用适时打开重归地表的通道,这些溶于岩浆的挥发物,便会随着汹涌的热流一起回到大气层。
雪球时期,由于冰盖的影响,全球的岩石风化率进入了一个历史低位,地表温室气体的消耗因素几乎“触底”。此时,火山作用的净输入便显得尤为突出了。火山持续溢气,大气中的温室气体越聚越多,当它们的占比重新达到足以封存阳光,使平均温度能够重回冰点之上时,经历了“冬眠”之后,生物圈获得了一场迸发式的发展,这种反应远远超出了元古代长期以来所表现出的样子。
一个从雪球中醒来的生物圈,将要给地球带来多大的变革呢?
长久以来被单细胞生物所统治的时空,随着雪球事件的结束而一并瓦解。多细胞的复杂生命,辐射性地扩展到了地球的每一个角落。生命从此成为地球的“显学”。这5.4亿年,是我们自己的故事。生命见证了一个个优势类群的崛起,也见证了惨不忍睹的灭绝。高山依然在隆升和剥蚀,海洋也依然在扩张和闭合,但是,唯有那神秘的雪球,却再也没有重回世间。
陆地的反照率高于海洋和冰面。
错误
在文章的第4段,提到“大陆的表面是岩石,对太阳光的反照率比大洋要强得多”,所以,陆地的反照率高于海洋;但是第6段提到,“说到反射太阳光,无论海水也好,岩石也罢,又有什么能跟晶莹的冰雪相比”。所以,很明显,冰面的反照率高于陆地。所以错误。
地球上46亿年历史中的最大极寒,莫过于元古代的那次“雪球事件”。雪球事件发生在距今7亿年前,全球冰川突如其来地尘封了一切。先是从两极开始,冰川逐渐向低纬度进军,直至把热带的暖风与浪花全部凝固在肃杀的极寒中。雪球事件来去匆匆,在元古代末期留下印记后,便马上消失在一如既往的温暖中。
人们究竟是靠什么线索,断言出当时的地球就是这么一个宇宙级的大雪球呢?靠岩石。只有岩石的残片,是唯一能够穿越时空,将尘封往事保留至今的星球遗迹。
岩石中的沉积岩(由地表沉积物压实固结而形成的岩类)是反映当时地表环境的直观快照。一层层的沉积岩构成地层,一套套地层又构成大陆表面直接披覆的“外皮”。所谓大陆,不外乎是蓝海中一座座庞大的“移动方舟”,它们会漂移、会裂解,也会在偶然的时段,合众为一。科学家们有一套完善的方法,揭示大陆上的每一块沉积岩形成于何时、何地以及何种环境,并以此还原大陆漂移和环境变迁的历史:利用层序律和同位素时钟,能够确定出地层形成的年代;利用沉积岩中含磁矿晶的排列方位,能够还原出大陆当时所处的纬度;岩石的结构与构造可以揭露沉积物生成的环境;而地层间的叠置关系则记录着环境的演化与变迁。
板块漂移可能是雪球事件的始作俑者。在当时的地球上,各个板块已经聚合为联合大陆,处于中低纬度间。大陆的表面是岩石,对太阳光的反照率比大洋要强得多,而低纬度偏偏又是地球接受太阳光最多的区域。陆地增加的直接后果,便是单位时间内整个地球系统获得的太阳能更少了。地表的温度输入主要靠阳光,“净收入”的减少,是全球变冷的第一推力。
地表之上,还有大气层。温度的输入是一回事,但维持又是另外一回事。地表温度的维持主要靠温室气体——比如二氧化碳(CO?)等对太阳能的锁定。大量陆地聚集到低纬度,对大气中CO?的含量是一个极为负面的影响因素。热带降雨活跃、大气潮湿,导致大陆岩石圈风化作用空前活跃。在风化作用中,大气中的O?、CO?、H?O等成分被消耗,并随着生成物进入岩石圈,从而退出大气循环。当大气中“净流通”的CO?等温室气体减少,温室效应便随之减弱。环境温度逐渐降低,冰川一步步生成并扩大,冰期就这样悄然而至。
到了冰川扩大的时候,事情就变得更加不可挽回了,冰川本身便是上述合力的结果,但它也恰恰是全球持续变冷最有效的诱因,回到反照率这个概念上,说到反射太阳光,无论海水也好,岩石也罢,又有什么能跟晶莹的冰雪相比?另外,当水体扩大结冰,蒸发会越来越少,大气中能够维持温度的湿润水汽也骤然下降,反照率的激增和蒸发率的骤减,直接使冷室效应进入了一个持续堆栈的死循环。环境模拟表明,当地球表面有一半被冰覆盖的时候,全球冻结将成为不可逆转的趋势,一个冰雪满布的地球,将是必然出现的结局。
那么谁又是当时地球的破冰者呢?
不是太阳,也不是撞击的天体,而是地球自己。这是一颗有着活跃内动力的热行星,而这份终将表现出来的力量,叫做火山作用。火山的及时救援,让地球从全面的凝结中苏醒了过来。被称为极端火山作用的事件,无疑是生物圈的灭绝级大杀器。然而此时,这个让生物圈闻风丧胆的武器,却成了把地球从雪球中拯救出来的功臣。当然,对付冰雪的套路其实也没什么新鲜的:不是靠岩浆的温度来直接烘烤,而是靠输出气体来间接改变大气圈的成分。
那些被封进岩石圈从而退出大气循环的温室气体们大概不会忘记,地球本身其实是一个更加庞大的循环系统。气体被锁进岩石圈?不要紧。岩石还要在板块构造的循环中被带回地幔里。当岩石的枷锁融化为流动的岩浆,气体也就重获了自由。随后,等火山作用适时打开重归地表的通道,这些溶于岩浆的挥发物,便会随着汹涌的热流一起回到大气层。
雪球时期,由于冰盖的影响,全球的岩石风化率进入了一个历史低位,地表温室气体的消耗因素几乎“触底”。此时,火山作用的净输入便显得尤为突出了。火山持续溢气,大气中的温室气体越聚越多,当它们的占比重新达到足以封存阳光,使平均温度能够重回冰点之上时,经历了“冬眠”之后,生物圈获得了一场迸发式的发展,这种反应远远超出了元古代长期以来所表现出的样子。
一个从雪球中醒来的生物圈,将要给地球带来多大的变革呢?
长久以来被单细胞生物所统治的时空,随着雪球事件的结束而一并瓦解。多细胞的复杂生命,辐射性地扩展到了地球的每一个角落。生命从此成为地球的“显学”。这5.4亿年,是我们自己的故事。生命见证了一个个优势类群的崛起,也见证了惨不忍睹的灭绝。高山依然在隆升和剥蚀,海洋也依然在扩张和闭合,但是,唯有那神秘的雪球,却再也没有重回世间。
科学家利用岩石层序律还原大陆当时所处的纬度。
错误
在文章的第3段,材料里面提到“利用沉积岩中含磁矿晶的排列方位,能够还原出大陆当时所处的维度。”,“利用层序律和同位素时钟,能够确定出地层形成的年代”。
地球上46亿年历史中的最大极寒,莫过于元古代的那次“雪球事件”。雪球事件发生在距今7亿年前,全球冰川突如其来地尘封了一切。先是从两极开始,冰川逐渐向低纬度进军,直至把热带的暖风与浪花全部凝固在肃杀的极寒中。雪球事件来去匆匆,在元古代末期留下印记后,便马上消失在一如既往的温暖中。
人们究竟是靠什么线索,断言出当时的地球就是这么一个宇宙级的大雪球呢?靠岩石。只有岩石的残片,是唯一能够穿越时空,将尘封往事保留至今的星球遗迹。
岩石中的沉积岩(由地表沉积物压实固结而形成的岩类)是反映当时地表环境的直观快照。一层层的沉积岩构成地层,一套套地层又构成大陆表面直接披覆的“外皮”。所谓大陆,不外乎是蓝海中一座座庞大的“移动方舟”,它们会漂移、会裂解,也会在偶然的时段,合众为一。科学家们有一套完善的方法,揭示大陆上的每一块沉积岩形成于何时、何地以及何种环境,并以此还原大陆漂移和环境变迁的历史:利用层序律和同位素时钟,能够确定出地层形成的年代;利用沉积岩中含磁矿晶的排列方位,能够还原出大陆当时所处的纬度;岩石的结构与构造可以揭露沉积物生成的环境;而地层间的叠置关系则记录着环境的演化与变迁。
板块漂移可能是雪球事件的始作俑者。在当时的地球上,各个板块已经聚合为联合大陆,处于中低纬度间。大陆的表面是岩石,对太阳光的反照率比大洋要强得多,而低纬度偏偏又是地球接受太阳光最多的区域。陆地增加的直接后果,便是单位时间内整个地球系统获得的太阳能更少了。地表的温度输入主要靠阳光,“净收入”的减少,是全球变冷的第一推力。
地表之上,还有大气层。温度的输入是一回事,但维持又是另外一回事。地表温度的维持主要靠温室气体——比如二氧化碳(CO?)等对太阳能的锁定。大量陆地聚集到低纬度,对大气中CO?的含量是一个极为负面的影响因素。热带降雨活跃、大气潮湿,导致大陆岩石圈风化作用空前活跃。在风化作用中,大气中的O?、CO?、H?O等成分被消耗,并随着生成物进入岩石圈,从而退出大气循环。当大气中“净流通”的CO?等温室气体减少,温室效应便随之减弱。环境温度逐渐降低,冰川一步步生成并扩大,冰期就这样悄然而至。
到了冰川扩大的时候,事情就变得更加不可挽回了,冰川本身便是上述合力的结果,但它也恰恰是全球持续变冷最有效的诱因,回到反照率这个概念上,说到反射太阳光,无论海水也好,岩石也罢,又有什么能跟晶莹的冰雪相比?另外,当水体扩大结冰,蒸发会越来越少,大气中能够维持温度的湿润水汽也骤然下降,反照率的激增和蒸发率的骤减,直接使冷室效应进入了一个持续堆栈的死循环。环境模拟表明,当地球表面有一半被冰覆盖的时候,全球冻结将成为不可逆转的趋势,一个冰雪满布的地球,将是必然出现的结局。
那么谁又是当时地球的破冰者呢?
不是太阳,也不是撞击的天体,而是地球自己。这是一颗有着活跃内动力的热行星,而这份终将表现出来的力量,叫做火山作用。火山的及时救援,让地球从全面的凝结中苏醒了过来。被称为极端火山作用的事件,无疑是生物圈的灭绝级大杀器。然而此时,这个让生物圈闻风丧胆的武器,却成了把地球从雪球中拯救出来的功臣。当然,对付冰雪的套路其实也没什么新鲜的:不是靠岩浆的温度来直接烘烤,而是靠输出气体来间接改变大气圈的成分。
那些被封进岩石圈从而退出大气循环的温室气体们大概不会忘记,地球本身其实是一个更加庞大的循环系统。气体被锁进岩石圈?不要紧。岩石还要在板块构造的循环中被带回地幔里。当岩石的枷锁融化为流动的岩浆,气体也就重获了自由。随后,等火山作用适时打开重归地表的通道,这些溶于岩浆的挥发物,便会随着汹涌的热流一起回到大气层。
雪球时期,由于冰盖的影响,全球的岩石风化率进入了一个历史低位,地表温室气体的消耗因素几乎“触底”。此时,火山作用的净输入便显得尤为突出了。火山持续溢气,大气中的温室气体越聚越多,当它们的占比重新达到足以封存阳光,使平均温度能够重回冰点之上时,经历了“冬眠”之后,生物圈获得了一场迸发式的发展,这种反应远远超出了元古代长期以来所表现出的样子。
一个从雪球中醒来的生物圈,将要给地球带来多大的变革呢?
长久以来被单细胞生物所统治的时空,随着雪球事件的结束而一并瓦解。多细胞的复杂生命,辐射性地扩展到了地球的每一个角落。生命从此成为地球的“显学”。这5.4亿年,是我们自己的故事。生命见证了一个个优势类群的崛起,也见证了惨不忍睹的灭绝。高山依然在隆升和剥蚀,海洋也依然在扩张和闭合,但是,唯有那神秘的雪球,却再也没有重回世间。
冰川出现时全球变冷的结果,也是全球进一步变冷的诱因。
正确
在文章的第6段,提到“冰川本身便是上述合力的结果,但它也恰恰是全球持续变冷最有效的诱因。”故表述正确。
21世纪以来,因重视科技投入,M国的科技发展取得了引人瞩目的成就。
首先,从资金投入方面看,M国投入巨资支持研发。2015年M国的研发总支出为2500.3亿美元,同比增长超过10%,占GDP达8%,可见其占GDP的比重保持着惊人的增长速度。其次,从资金组成方面看,M国2015年的公共研发支出比2014年增长了15%,并且政府打算在2016年再增加6.8%的投资。2015年M国研发总投入中约75%的经费来自私营企业,私营企业研发中心达1.2万个,可见私营企业已成为M国研发成果的主要贡献者。再次,从研发方向看,M国排名前10的企业90%的研发资金投入高新技术应用领域,排名前100的企业近70%的研发资金也投入上述领域,企业在理论研究领域的投入较少,说明M国科技研发有重技术应用、轻基础理论科学的特点。过去,外国直接投资在M国科技创新体系中的作用并不突出,不过这一状况正在改善。2000—2015年,外国直接投资占M国GDP的比重从2%升至9%。2015年M国外资净流入达80亿美元,外国直接投资同比增长103%,使得M国在全球投资目的地排名榜中上升了11位,为世界第16位。
近年来,M国的科技竞争力得到了显著提升。2000年之后,该国充分重视论文产出。美国《科学引文索引》(SCI)显示,十多年来,M国发表的论文数量大幅增加。2002—2016年,SCI收录的该国论文由2万余篇增至171026篇,平均每年增加1万余篇。可以预见,2017年该国被SCI收录的论文将超过18万篇。
阅读给定材料,指出其中存在的4处论证错误并分别说明理由。请在答题卡上按序号分条作答,每一条先将论证错误写在“A”处(不超过75字),再将相应理由写在“B”处(不超过50字)。
1.A:由“研发总支出同比增长超过10%,占GDP高达8%”不能推出“其占GDP的比重保持这惊人的增长速度”。B:因为“占GDP比重”和“占GDP的比重的增长速度”不是同一概念。
2.A:由“M国研发总投入中私营企业经营占比高,企业研发中心数量多”不能推出“私营企业已经成为M国研发成果的主要贡献者”。B:因为研发成果的主要贡献者跟研发成果的存在和意义有关,与研发投入和研发中心数量没有必然关系。
3.A:由“M国企业研发资金投入集中在高新技术应用领域,而非理论研究领域”得不出“M国科技研发重技术应用、轻基层理论科学”。B:因为部分企业的研发情况不能代表M国的研发特点,可能还与政府科研机构等有关。
4.A:第三段由“外国在M国直接投资总额在增加”推不出“外国直接投资在M国科技创新体系中作用不突出的状况正在改善”。B:因为外国直接投资并不一定投资于M国科技创新,论据没有建立外国直接投资和M国科技创新之间的关系。
5.A:最后一段由“2002-2016年,平均每年增加1万余篇”不能推出“2017年该过被收录论文将超过18万篇”。B:因为过去十多年的论文年均增量不能代表该趋势一直持续,2017年未必会增加1万余篇。
6.A:最后一段由“M国发表的论文数量大幅增加”不能推出“近年来M国科技竞争力显著提升”。B:因为论文产出、SCI收录M国论文和“科技竞争力”并非同一概念。
2016年9月,香港中文大学教授卢煜明凭借无创产前DNA检测技术获得中国首届“未来科学大奖”。用这项技术做唐氏综合症筛查,只需抽取孕妇的少量静脉血,便可检测胎儿的DNA,让产检更加安全。然而,卢煜明承认,来自社会伦理的挑战一直贯穿于他的研究中。比如,这种检测会不会成为一种间接的、对遗传病患者的歧视;另外,不少孕妇用这项技术进行胎儿的产前筛查,很多女婴可能因此无法出生。卢煜明说:“有时候我会担心,也许我们已经走得太远了。”
科技进步及其成果的应用不仅极大地改善了人们的生活方式,还扩大了人们的道德视野,比如,网络科技的发展促使了“网络道德”的诞生,“网络道德”能帮助人们更好的处理人与网络的关系,以及在网络虚拟社会中人与人的关系。有学者提出了网络应用中的道德原则,包括对个人信息的数据采集和扩散活动作出限制。其中强调同意原则,即使用个人信息之前须征求本人意见,让其知晓使用的人员、目的、具体数据、结果等。
科技进步带来的变化影响着整个世界。虽说任何改变都需要时间,但科技进步带来的改变会随着时间的推移逐步加快。科技进步可以帮助人们解决很多问题,但绝非万能,许多问题仍在技术解决的范畴之外。未来的科技进步还会带来许多新问题,就像过去的技术进步为人类带来便利的同时也造成了环境恶化一样,我们需要谨记的是,主宰未来世界的是人,而不是技术及其发展水平。
参考上述材料,结合当前社会实际,以“科学需要快一点还是慢一点”为话题,自拟标题,写一篇议论文。
要求:观点鲜明,论证充分,逻辑严谨,语言流畅,字数800—1000字。
【论点选取1】
论点的确立需要紧密结合材料,材料从“无创产前DNA检测技术”引出科技的利与弊,接着提到“科技进步及其成果的应用不仅极大地改善了人们的生活方式,还扩大了人们的道德视野”,最后一段提到“科技进步带来的改变会随着时间的推移逐步加快”、“但绝非万能,许多问题仍在技术解决的范畴之外”、“未来的科技进步还会带来许多新问题,就像过去的技术进步为人类带来便利的同时也造成了环境恶化一样”。梳理材料会发现,材料重点在谈科技带来的问题,暗示我们科学发展可以慢一点,所以文章论点确定为“科学发展需要慢一点”。
文章的论点为“科学发展慢一点”,文章的重心可以从“为什么”这一角度展开论述,即分析“为什么科学发展需要慢一点”。分论点可以从“科学的快速发展,法制建设跟不上,需要慢下来”、“科学发展太快,学术道德建设跟不上,需要慢下来”、“科学快速发展,诱发心理疾病,需要慢下来”展开论证。
【参考范文1】
科学发展慢一点
中国高铁、中国航空航天、中国军事装备快速发展,我国的科学发展取得了重大成就,同时也折射出了一些问题:网络法制建设落后、违反学术道德事件频发、心理疾病增多,这些都在警示我们,科学发展需要慢一点。
科学的快速发展,法制建设跟不上,需要慢下来。网约车安全事故的发生、网络暴力的出现、信息泄露事件频发,而受害者维权之路坎坷,这一切折射出我们网络法制建设的落后。面对这些,一方面需要我们相关法律工作者紧跟步伐,加快法制建设,另一方面需要我们科学发展慢一点。如果科学发展走得太快,而相关的法制建设跟不上,类似的网约车事故,网络暴力将会不断重演,愈演愈烈,最终将不利于社会的安全稳定。
科学发展太快,学术道德建设跟不上,需要慢下来。科学研究硕果累累、大繁荣的背景下,也存在着部分专家学者急功近利,违背学术道德现象的发生,为此需要我们科学发展慢一点。科学本身是服务人类的,如果研究科学的科学家本人违背了人性道德,一味追求快速出成果,快速晋升,这将如何保证我们的科学成就符合人伦,不滋生负面的社会问题呢?为此迫切需要科学发展慢一点,加强学术道德建设,净化学术环境。
科学快速发展,诱发心理疾病,需要慢下来。科学的快速发展,生活节奏的加快,人们一味的追求高速度、高效率,也诱发了多种多样的抑郁症、自闭症等心理疾病,为此需要慢下来。在科学快速发展的同时,记得慢下来,加强自我素养的提升,学会调节自我心理。尼泊尔是一个并不富裕的国家,可是据相关调查表明,这里却是世界上幸福指数较高的国家之一,这与这个国家慢节奏的生活不无关系。在尼泊尔旅游,你可以看到很多当地人和游客在这里发呆的画面。正如作家米兰昆德拉所言,“慢下来,自在有为的生活急不得”。
科学进步改变了我们的生活方式、扩大了我们的道德视野,同时我们也不得不承认科学快速发展可能带来的法制建设滞后、学术道德水平下滑、心理疾病增多,为此我们需要慢下来,为更加和谐美好的未来而努力。
字数:807字
【文章分析1】
文章开头从科学发展过快可能带来的问题引出文章的总论点“科学发展需要慢下来。”
文章三个分论点的选取也较为具体,更加接地气,论点明确,也便于论证。
从论证方面来看,文章使用了举例论证,假设论证,论证说理充分。
【论点选取2】
论点的确立需要紧密结合材料,材料从“无创产前DNA检测技术”引出科技的利与弊,接着提到“科技进步及其成果的应用不仅极大地改善了人们的生活方式,还扩大了人们的道德视野”,最后一段提到“科技进步带来的改变会随着时间的推移逐步加快”、“但绝非万能,许多问题仍在技术解决的范畴之外”、“未来的科技进步还会带来许多新问题,就像过去的技术进步为人类带来便利的同时也造成了环境恶化一样”。梳理材料会发现,材料重点在谈科技带来的问题,暗示我们科学发展可以慢一点,所以文章论点确定为“科学发展需要慢一点”。
文章的论点为“科学发展慢一点”,文章的重心可以从“为什么”这一角度展开论述,即分析“为什么科学发展需要慢一点”。分论点可以从“科学快速发展可能带来新问题,需要慢一点”、“科学并非万能,需要慢一点”、“科学发展慢下来,利于健康心理状态的形成”。
这三个分论点中,前两个是从材料第三自然段选取的,最后一个分论点写的是慢下来的好处。
【参考范文2】
科学发展慢一点
电灯照亮了黑夜,空调冷暖了房间,汽车、飞机缩短了距离,微信、支付宝、滴滴出行,改变了我们的支付方式以及出行方式。然而,汽车尾气、空调氟利昂、原子弹,正如悬挂在人们头上的达摩克利斯之剑,威胁着人类的生存和发展。为此,科学发展需要慢一点。
科学快速发展可能带来新问题,需要慢一点。正如历史告诉我们,塑料袋便利人们的同时,也污染了环境;汽车便利出行的同时,也释放了尾气;克隆技术在给人们带来惊喜的同时,也衍生出了许多伦理问题;互联网普及在方便交流的同时,也滋生了信息不安全问题。未来的科学技术同样也可能会产生类似的新问题,这警示我们,在快速发展科学技术的同时需要慢一点,在迫不及待想要获得科学技术带来的进步的同时,需要慢下来,尽量减少科学技术带来的问题。
科学并非万能,需要慢一点。当代社会的快速发展也滋生了很多问题,抑郁症等心理疾病增多,校园暴力事件层出不穷,以及癌症患者越来越多,这一系列问题并非单单靠科学技术能够解决的。如果这些问题得不到有效的解决,那么再高明的科学技术,也不能让人类生活越来越美好。为此迫切需要,科学技术的发展慢一点,等一等我们精神文化层面的发展。科学与人文的同步发展,让二者相协调,只有如此才能建设更加和谐美好的未来。
科学发展慢下来,利于健康心理状态的形成。在科学快速发展的大背景下,人们一味的追求高速度,致使许多人压力较大,形成了典型的亚健康状态,如果长此以往,定会给家庭的和谐、社会的稳定造成负面的影响。为此迫切需要科学发展慢一点,不再一味追求所谓“效率”,只有慢下来,劳逸结合,才利于健康心理状态的形成。尼泊尔是一个并不富裕的国家,可是据相关调查表明,这里却是世界上幸福较高的国家之一,这与这个国家慢节奏的生活不无关系。在尼泊尔旅游,你可以看到很多当地人和游客在这里发呆的画面。正如作家米兰昆德拉所言,“慢下来,自在有为的生活急不得。”
科学技术并非万能,也可能产生新问题,需要科学技术慢一点。慢一点,并非不思进取、按部就班,而是让科学技术与人文相结合,让科学技术大放光彩。我们有理由相信,通过这样的努力,定会让科学技术熠熠生辉。
字数:887字
【文章分析2】
此篇文章论点明确,“科学发展需要慢一点”为总论点,分论点为“科学快速发展可能带来新问题,需要慢一点”、“科学快速发展可能带来新问题,需要慢一点”、“科学发展慢下来,利于健康心理状态的形成。”文章结尾是总结展望式的结尾,在总结主要内容的基础之上,对具有人文性的科技做了展望。
文章开头,从广泛应用于当下的科学技术的例子入手,引出了快速发展的科学技术对我们可能产生的危害,直接在结尾得出论点:“科学发展需要慢下来。”论点鲜明。
文章结尾是总结展望式,在总结主要内容的基础之上,对具有人文性的科学技术做了展望。
从论证方面来看,文章使用了举例论证,假设论证,论证充分。
地球上46亿年历史中的最大极寒,莫过于元古代的那次“雪球事件”。雪球事件发生在距今7亿年前,全球冰川突如其来地尘封了一切。先是从两极开始,冰川逐渐向低纬度进军,直至把热带的暖风与浪花全部凝固在肃杀的极寒中。雪球事件来去匆匆,在元古代末期留下印记后,便马上消失在一如既往的温暖中。
人们究竟是靠什么线索,断言出当时的地球就是这么一个宇宙级的大雪球呢?靠岩石。只有岩石的残片,是唯一能够穿越时空,将尘封往事保留至今的星球遗迹。
岩石中的沉积岩(由地表沉积物压实固结而形成的岩类)是反映当时地表环境的直观快照。一层层的沉积岩构成地层,一套套地层又构成大陆表面直接披覆的“外皮”。所谓大陆,不外乎是蓝海中一座座庞大的“移动方舟”,它们会漂移、会裂解,也会在偶然的时段,合众为一。科学家们有一套完善的方法,揭示大陆上的每一块沉积岩形成于何时、何地以及何种环境,并以此还原大陆漂移和环境变迁的历史:利用层序律和同位素时钟,能够确定出地层形成的年代;利用沉积岩中含磁矿晶的排列方位,能够还原出大陆当时所处的纬度;岩石的结构与构造可以揭露沉积物生成的环境;而地层间的叠置关系则记录着环境的演化与变迁。
板块漂移可能是雪球事件的始作俑者。在当时的地球上,各个板块已经聚合为联合大陆,处于中低纬度间。大陆的表面是岩石,对太阳光的反照率比大洋要强得多,而低纬度偏偏又是地球接受太阳光最多的区域。陆地增加的直接后果,便是单位时间内整个地球系统获得的太阳能更少了。地表的温度输入主要靠阳光,“净收入”的减少,是全球变冷的第一推力。
地表之上,还有大气层。温度的输入是一回事,但维持又是另外一回事。地表温度的维持主要靠温室气体——比如二氧化碳(CO?)等对太阳能的锁定。大量陆地聚集到低纬度,对大气中CO?的含量是一个极为负面的影响因素。热带降雨活跃、大气潮湿,导致大陆岩石圈风化作用空前活跃。在风化作用中,大气中的O?、CO?、H?O等成分被消耗,并随着生成物进入岩石圈,从而退出大气循环。当大气中“净流通”的CO?等温室气体减少,温室效应便随之减弱。环境温度逐渐降低,冰川一步步生成并扩大,冰期就这样悄然而至。
到了冰川扩大的时候,事情就变得更加不可挽回了,冰川本身便是上述合力的结果,但它也恰恰是全球持续变冷最有效的诱因,回到反照率这个概念上,说到反射太阳光,无论海水也好,岩石也罢,又有什么能跟晶莹的冰雪相比?另外,当水体扩大结冰,蒸发会越来越少,大气中能够维持温度的湿润水汽也骤然下降,反照率的激增和蒸发率的骤减,直接使冷室效应进入了一个持续堆栈的死循环。环境模拟表明,当地球表面有一半被冰覆盖的时候,全球冻结将成为不可逆转的趋势,一个冰雪满布的地球,将是必然出现的结局。
那么谁又是当时地球的破冰者呢?
不是太阳,也不是撞击的天体,而是地球自己。这是一颗有着活跃内动力的热行星,而这份终将表现出来的力量,叫做火山作用。火山的及时救援,让地球从全面的凝结中苏醒了过来。被称为极端火山作用的事件,无疑是生物圈的灭绝级大杀器。然而此时,这个让生物圈闻风丧胆的武器,却成了把地球从雪球中拯救出来的功臣。当然,对付冰雪的套路其实也没什么新鲜的:不是靠岩浆的温度来直接烘烤,而是靠输出气体来间接改变大气圈的成分。
那些被封进岩石圈从而退出大气循环的温室气体们大概不会忘记,地球本身其实是一个更加庞大的循环系统。气体被锁进岩石圈?不要紧。岩石还要在板块构造的循环中被带回地幔里。当岩石的枷锁融化为流动的岩浆,气体也就重获了自由。随后,等火山作用适时打开重归地表的通道,这些溶于岩浆的挥发物,便会随着汹涌的热流一起回到大气层。
雪球时期,由于冰盖的影响,全球的岩石风化率进入了一个历史低位,地表温室气体的消耗因素几乎“触底”。此时,火山作用的净输入便显得尤为突出了。火山持续溢气,大气中的温室气体越聚越多,当它们的占比重新达到足以封存阳光,使平均温度能够重回冰点之上时,经历了“冬眠”之后,生物圈获得了一场迸发式的发展,这种反应远远超出了元古代长期以来所表现出的样子。
一个从雪球中醒来的生物圈,将要给地球带来多大的变革呢?
长久以来被单细胞生物所统治的时空,随着雪球事件的结束而一并瓦解。多细胞的复杂生命,辐射性地扩展到了地球的每一个角落。生命从此成为地球的“显学”。这5.4亿年,是我们自己的故事。生命见证了一个个优势类群的崛起,也见证了惨不忍睹的灭绝。高山依然在隆升和剥蚀,海洋也依然在扩张和闭合,但是,唯有那神秘的雪球,却再也没有重回世间。
根据文章,在答题卡相应的题号位置填补“雪球事件”形成的因果链示意图的缺项,其中①③均不超过15字,②④均不超过10字。

①风化作用活跃导致温室气体减少
②冰川扩大,冰期到来
③水体扩大结冰导致水汽骤然下降
④冷室效应,持续死循环
地球上46亿年历史中的最大极寒,莫过于元古代的那次“雪球事件”。雪球事件发生在距今7亿年前,全球冰川突如其来地尘封了一切。先是从两极开始,冰川逐渐向低纬度进军,直至把热带的暖风与浪花全部凝固在肃杀的极寒中。雪球事件来去匆匆,在元古代末期留下印记后,便马上消失在一如既往的温暖中。
人们究竟是靠什么线索,断言出当时的地球就是这么一个宇宙级的大雪球呢?靠岩石。只有岩石的残片,是唯一能够穿越时空,将尘封往事保留至今的星球遗迹。
岩石中的沉积岩(由地表沉积物压实固结而形成的岩类)是反映当时地表环境的直观快照。一层层的沉积岩构成地层,一套套地层又构成大陆表面直接披覆的“外皮”。所谓大陆,不外乎是蓝海中一座座庞大的“移动方舟”,它们会漂移、会裂解,也会在偶然的时段,合众为一。科学家们有一套完善的方法,揭示大陆上的每一块沉积岩形成于何时、何地以及何种环境,并以此还原大陆漂移和环境变迁的历史:利用层序律和同位素时钟,能够确定出地层形成的年代;利用沉积岩中含磁矿晶的排列方位,能够还原出大陆当时所处的纬度;岩石的结构与构造可以揭露沉积物生成的环境;而地层间的叠置关系则记录着环境的演化与变迁。
板块漂移可能是雪球事件的始作俑者。在当时的地球上,各个板块已经聚合为联合大陆,处于中低纬度间。大陆的表面是岩石,对太阳光的反照率比大洋要强得多,而低纬度偏偏又是地球接受太阳光最多的区域。陆地增加的直接后果,便是单位时间内整个地球系统获得的太阳能更少了。地表的温度输入主要靠阳光,“净收入”的减少,是全球变冷的第一推力。
地表之上,还有大气层。温度的输入是一回事,但维持又是另外一回事。地表温度的维持主要靠温室气体——比如二氧化碳(CO?)等对太阳能的锁定。大量陆地聚集到低纬度,对大气中CO?的含量是一个极为负面的影响因素。热带降雨活跃、大气潮湿,导致大陆岩石圈风化作用空前活跃。在风化作用中,大气中的O?、CO?、H?O等成分被消耗,并随着生成物进入岩石圈,从而退出大气循环。当大气中“净流通”的CO?等温室气体减少,温室效应便随之减弱。环境温度逐渐降低,冰川一步步生成并扩大,冰期就这样悄然而至。
到了冰川扩大的时候,事情就变得更加不可挽回了,冰川本身便是上述合力的结果,但它也恰恰是全球持续变冷最有效的诱因,回到反照率这个概念上,说到反射太阳光,无论海水也好,岩石也罢,又有什么能跟晶莹的冰雪相比?另外,当水体扩大结冰,蒸发会越来越少,大气中能够维持温度的湿润水汽也骤然下降,反照率的激增和蒸发率的骤减,直接使冷室效应进入了一个持续堆栈的死循环。环境模拟表明,当地球表面有一半被冰覆盖的时候,全球冻结将成为不可逆转的趋势,一个冰雪满布的地球,将是必然出现的结局。
那么谁又是当时地球的破冰者呢?
不是太阳,也不是撞击的天体,而是地球自己。这是一颗有着活跃内动力的热行星,而这份终将表现出来的力量,叫做火山作用。火山的及时救援,让地球从全面的凝结中苏醒了过来。被称为极端火山作用的事件,无疑是生物圈的灭绝级大杀器。然而此时,这个让生物圈闻风丧胆的武器,却成了把地球从雪球中拯救出来的功臣。当然,对付冰雪的套路其实也没什么新鲜的:不是靠岩浆的温度来直接烘烤,而是靠输出气体来间接改变大气圈的成分。
那些被封进岩石圈从而退出大气循环的温室气体们大概不会忘记,地球本身其实是一个更加庞大的循环系统。气体被锁进岩石圈?不要紧。岩石还要在板块构造的循环中被带回地幔里。当岩石的枷锁融化为流动的岩浆,气体也就重获了自由。随后,等火山作用适时打开重归地表的通道,这些溶于岩浆的挥发物,便会随着汹涌的热流一起回到大气层。
雪球时期,由于冰盖的影响,全球的岩石风化率进入了一个历史低位,地表温室气体的消耗因素几乎“触底”。此时,火山作用的净输入便显得尤为突出了。火山持续溢气,大气中的温室气体越聚越多,当它们的占比重新达到足以封存阳光,使平均温度能够重回冰点之上时,经历了“冬眠”之后,生物圈获得了一场迸发式的发展,这种反应远远超出了元古代长期以来所表现出的样子。
一个从雪球中醒来的生物圈,将要给地球带来多大的变革呢?
长久以来被单细胞生物所统治的时空,随着雪球事件的结束而一并瓦解。多细胞的复杂生命,辐射性地扩展到了地球的每一个角落。生命从此成为地球的“显学”。这5.4亿年,是我们自己的故事。生命见证了一个个优势类群的崛起,也见证了惨不忍睹的灭绝。高山依然在隆升和剥蚀,海洋也依然在扩张和闭合,但是,唯有那神秘的雪球,却再也没有重回世间。
请给本文写一篇内容摘要。
要求:概括准确、条理清晰、文字简洁,不超过200字。
摘要:本文介绍地球历史时期出现的“雪球事件”。首先,通过研究岩石中的沉积岩来揭示“雪球事件”发生的原因。板块漂移、陆地集中导致热量输入减少,风化作用活跃导致温室气体减少,温度下降,冰川扩大,水汽下降,冷室效应持续死循环,引发雪球事件。然后,解释破冰的原因。温室气体消耗减少、火山作用释放温室气体,从而打破地球的冰期。最后,指出雪球事件后地球生物圈发生重大变革,但雪球却再没有重回世间。(192字)
您目前分数偏低,基础较薄弱,建议加强练习。