单选题 (一共12题,共12分)

1.

已知集合 A={0, 1, 2}, B={x|﹣ 2<x<2, x∈Z}, 则 A∪ B=()

2.

已知复数 z 满足 2zi=1+3i, 则 z 的虚部为()

image.png

3.

已知命题 p: ∃x∈N*, lgx<0, q: ∀x∈R, cosx≤1, 则下列命题是真命题的是()

4.

某大学工程学院共有本科生 1200 人、 硕士生 400 人、 博士生 200 人, 要用分层抽样的方法从中抽取一个容量为 180 的样本, 则应抽取博士生的人数为()

5.

image.png

6.

image.png

image.png

7.

image.png

image.png

image.png

8.

image.png

image.png

9.

花窗是一种在窗洞中用镂空图案进行装饰的建筑结构, 这是中国古代建筑中常见的美化形式, 既具备实用功能, 又带有装饰效果. 如图所示是一个花窗图案, 大圆为两个等腰直角三角形的外接圆, 阴影部分是两个等腰直角三角形的内切圆. 若在大圆内随机取一点, 则该点取自阴影部分的概率为()

image.png

10.

image.png

image.png

11.

image.png

image.png

12.

如图, 在正四面体 ABCD 中, E 是棱 AC 的中点, F 在棱 BD 上, 且 BD=4FD,则异面直线 EF 与 AB 所成的角的余弦值为()

image.png

填空题 (一共4题,共4分)

13.

image.png

14.

image.pngimage.png

15.

image.png

16.

已知三棱锥 P﹣ ABC 的每条侧棱与它所对的底面边长相等, 且PA= 3√2, PB=PC=5, 则该三棱锥的外接球的表面积为 .

问答题 (一共7题,共7分)

17.

某校举办歌唱比赛, A~G 七名评委对甲、 乙两名选手打分如表所示:

image.png

18.

在锐角△ABC 中, B=60° , AB=3, AC= √7.

(1) 求△ABC 的面积;

(2) 延长边 BC 到 D, 使得 BD=4BC, 求 sin∠ADB.

19.

如图, 四棱锥 P﹣ ABCD 的底面 ABCD 是平行四边形, PA⊥底面 ABCD, PA=AD=4, ∠BAD=120° , 平行四边形 ABCD 的面积为4√3, 设 E 是侧棱 PC 上一动点.

(1) 求证: CD⊥AE;

(2) 当 E 是棱 PC 的中点时, 求点 C 到平面 ABE 的距离.

image.png

20.

image.png

image.png

21.

image.png

image.png

22.

image.png

image.png

image.png

23.

设函数 f(x) =|3x﹣ 6|+2|x+1|﹣ m(m∈R).

(1) 当 m=2 时, 解不等式 f(x) >12;

(2) 若关于 x 的不等式 f(x) +|x+1|≤0 无解, 求 m 的取值范围.