设n阶方阵A、B、C满足关系式ABC=E,其中E是n阶单位阵,则必有
- A.ACB=E
- B.CBA=E
- C.BAC=E
- D.BCA=E
正确答案及解析
正确答案
D
解析
矩阵的乘法没有交换律,只有一些特殊情况可交换,由于A,B,C均为n阶矩阵,且ABC=E,据行列式乘法公式|A||B||C|=1知A、B、C均可逆.那么对ABC=E先左乘A^-1再右乘A,有ABC=E→BC=A^-1→BCA=E.选(D).类似地,由BCA=E→CAB=E.不难想出,若n阶矩阵ABCD=E,则有ABCD=BCDA=CDAB=DABC=E.