设随机变量X~P(λ),且E[(X-1)(X-2)]=1,则λ=_______.
正确答案及解析
正确答案
解析
因为X~P(λ),所以E(X)=λ,D(X)=λ,故E(X^2)=D(X)+【E(X)】^2=λ^2+λ. 由E【(X-1)(X-2)】=E(X^2—3X+2)=E(X^2)-3E(X)+2=λ^2-2λ+2=1得λ=1.
设随机变量X~P(λ),且E[(X-1)(X-2)]=1,则λ=_______.
因为X~P(λ),所以E(X)=λ,D(X)=λ,故E(X^2)=D(X)+【E(X)】^2=λ^2+λ. 由E【(X-1)(X-2)】=E(X^2—3X+2)=E(X^2)-3E(X)+2=λ^2-2λ+2=1得λ=1.